课程大纲:
PART 1 Excel与SQL数据分析
一、数据分析概念与职业操守
数据分析概念、方法论、角色
【领会】
a)数据分析基本概念(数据分析、数据挖掘、大数据)
b)数据分析目的及其意义
c)数据分析方法与流程
d)数据分析的不同角色与职责
数据分析师职业道德与行为准则
【领会】
a)数据分析师职业道德操守
b)数据分析师专业行为准则
c)大数据立法、安全、隐私
二、Excel表格结构
总体要求:
理解表格结构与表结构的数据特征、理解表结构与表结构数据获取操作方法、理解表结构数据连接及汇总的逻辑、能够应用表结构连接及汇总逻辑关联多表进行汇总求值计算、能够制作ER关系图
表格结构数据特征
【领会】
a.表格结构数据概念
b.表格结构数据处理工具
c.表格结构数据获取方法
【熟知】
a.表格结构数据特征
b.表格结构数据获取、引用、查询与计算
c.单元格区域的特征
【应用】
a.表格结构数据的引用方法
b.表格结构数据的查询方法
c.表格结构数据的常用函数
d.表结构数据特征
【熟知】
a.理解主键的意义
b.理解维度及度量的意义
c.理解缺失值
三、数据库应用
总体要求
理解数据库的基本概念、理解DDL及DML语言、能够根据业务需求及数据特征使用查询语言从数据库中获取准确、完整的数据信息、能够应用数据库函数进行数据处理及计算u
【熟知】
a)运算符
b)SQL语句的书写顺序和执行逻辑
【应用】
a)基本查询:去重查询、设置别名
b)条件查询:多条件查询、空值查询、模糊查询
c)分组查询:分组聚合、分组后筛选
d)查询结果排序、限制查询结果数量
e)多表查询
【领会】
a)对应关系:一对一、一对多、多对多
b)连接方式:内连接、左连接、右连接
c)连接条件:等值连接、不等值连接
【熟知】
a)连接查询的逻辑和联合查询规则
【应用】
a)连接查询:内连接、左连接、右连接
b)联合查询:去重、不去重
c)子查询
【领会】
a)子查询分类
【熟知】
b)子查询位置、子查询操作符
【应用】
a)子查询语法规则
b)子查询优化
c)数据库函数
【领会】
a)计算字段
【熟知】
b)函数功能及参数
【应用】
数学函数、字符串函数、日期时间函数、分组合并函数、逻辑函数
PART 2 描述性统计分析
一、数据集中与离散趋势分析
总体要求
理解统计基本概念、理解描述性统计相关知识内容、理解描述性统计图表定义及适用场景、能够应用描述性统计知识描述及探索业务问题
1、统计基本概念
2、【熟知】
统计学含义及其应用
统计学的基本概念:数据、总体、样本、参数、变量
2、数据的描述性统计
3、【领会】描述性统计图表:直方图、散点图、箱型图
集中趋势的描述:众数、中位数、分位数、平均数
离散程度的描述:极差、方差、标准差、离散系数、变异系数分布形态的描述:偏态、峰态
二、数据各种分布
【应用】
能够应用描述性统计知识对业务数据进行恰当的数据特征描述,针对数据描述特征阐述业务问题、探索问题原因、提出解决问题方法
3、统计分布
【熟知】
两点分布、二项分布、正态分布、 分布、T分布、F分布
4、相关分析
【熟知】
a)相关分析的描述:散点图、相关分析的类型
b)相关关系的度量:相关系数
PART 3 多维数据透视分析
一、构建多维模型
总体要求
理解多维数据模型价值、理解多维数据模型逻辑、理解透视分析原理、能够活用多维数据模型结合恰当透视方法观测业务问题实现商业洞察
1、多表透视分析逻辑
【熟知】
熟知透视分析的作用价值
理解多表环境下的连接、透视逻辑
【应用】
能够通过表的字段理解该表所代表的业务维度及业务意义,能够通过表的业务意义倒推回表中字段的主键、维度、度量属性
2、多维数据模型
【领会】
了解使用多维数据模型的业务意义
【熟知】
a)熟知多维数据模型的创建方法
b)熟知多维数据模型中连接方式与汇总结果间的关系
c)熟知多维数据模型下汇总维度与筛选维度间的差异及各自的适用场景
二、透视规则与计算指标
【应用】
能够通过5W2H思维模型梳理业务线索,搜集完整的多表数据。 能够根据业务需求,按照正确的连接关系创建完整、准确、全面的多维数据模型 能够根据多维数据模型推导出可探索的业务问题范围,实现业务洞察
3、透视分析方法
【领会】
透视分析的价值及意义
【熟知】
a)熟知基本透视规则:求和、求平均、计数、最大最小值
b)熟知条件筛选透视规则:多条件透视计算、不同层级维度透视计算
c)熟知基本对比计算规则:均比、基准比、标准比、百分比、差异百分比
d)熟知时间维度下的透视计算规则:不同时间段、不同时间位移量下的透视计算规则熟知行间透视与字段上透视的差异
【应用】
a)能够根据业务需求选择创建正确的透视规则
b)能够将透视规则应用在正确的多维模型下描述业务问题
c)能够通过透视结果理解业务问题
d)透视结果与预期结果不符时,能够检查、追踪问题原因
PART 4 业务数据分析
一、构建业务指标
总体要求
理解业务数据分析方法、掌握业务数据分析流程、能够使用及设计创建业务指标、能够结合业务模型及业务分析方法正确理解业务问题,找到问题原因,并能够提出解决问题建议
数据驱动型业务管理方法
【熟知】
a)熟知数据从业务中来到业务中去的全过程
b)熟知数据驱动型业务管理的价值意义
c)熟知数据驱动型业务管理流程
d)熟知数据驱动型业务管理思维方式
【应用】
能够通过数据驱动型业务管理流程找到业务分析与业务管理需求的结合点,能够正确理解数据的出处及产生逻辑,能够正确的运用数据为业务管理提供有价值的数据分析结果
2、指标的应用与设计
【领会】
指标的作用【熟知】
熟知从指标结果出发到业务行为落地的思维过程及分析方法熟知指标与透视计算间的关系
a)熟知常用指标:
b)流量相关指标
c)转化相关指标
d)营运、销售相关指标
e)库存类指标
f)常用财务指标
g)绩效类指标
h)客户相关指标
i)熟知拆解业务需求设计指标方法
二、数据分析思维
【应用】
能够根据指标结果洞察业务问题及影响
能够根据业务场景选择恰当的指标进行观测
能够根据业务需求设计新指标,完善指标体系
3、业务分析方法
【领会】
不同业务分析方法各自的作用
【熟知】
熟知以下业务分析方法:
客户分析:客户来源分析、客户价值分析、客户生命周期分析、客户行为分析商品分析:商品进销存分析、商品渠道分析、商品耗损分析、商品价格分析流量、转化分析:流量转化分析、流量渠道分析
行为效果分析:活动效果分析、销售分析、其他行为效果分析
业务分析模型:漏斗模型、RFM模型、客户价值模型
业务分析方法:树状结构分析法、二八分析法、四象限分析法、同期群分析法
【应用】
能够应用恰当分析方法解决业务问题
能够将数据处理分析技能融入到业务分析方法中,为数据驱动型业务管理提供正确、全面、客观的数据依据
PART5 业务分析报告与数据可视化报表
一、各种图表可视化
总体要理解业务分析报告与数据可视化报表的制作方法、能够结合业务需求撰写正确的业务分析报告,能够结合业务需求创建全面的数据可视化报表
可视化分析图表
【领会】业务图表与统计图表的区别
【熟知】业务图表决策树
a.熟知比较类图表的使用方法
b.熟知描述类图表的使用方法
c.熟知结构类图表的使用方法
d.熟知序列类图表的使用方法
【应用】
能够根据数据特征及业务需求选择正确的业务类图表使用能够通过图表展示内容理解业务问题
二、发布数据分析报表
撰写业务分析报告
【领会】业务分析报告作用
【熟知】
a.熟知业务分析报告撰写流程
b.熟知业务分析报告撰写注意事项
c.熟知业务分析报告设计方法
【应用】
a.能够根据业务需求选择正确的报告论点
b.能够根据报告论点搜集并展示充分、正确的数据依据
c.能够撰写合理严谨的分析报告,并提出有价值的分析建议
3、创建数据可视化报表
【领会】数据可视化报表的作用
【熟知】
a.熟知数据可视化报表与业务分析报告的差异
b.熟知数据可视化报表的创建过程
c.熟知数据可视化报表的设计思路
d.熟知数据可视化报表的应用方法
【应用】
a.能够结合业务需求设计可落地的数据可视化报表内容
b.能够将抽象的业务需求转化为具象的数据维度与度量描述
c.能够制作可清晰、准确、全面地描述业务问题、展示业务全面场景的数据可视化报表
推荐学习书目:
说明:推荐学习书目中,部分书籍结合软件,但考试不会考软件,考生可根据自身需求
选择性学习。参考书目不需全部学完,根据考纲知识点进行针对性学习即可。
[1] 贾俊平,何晓群,金勇进. 统计学(第 7 版)[M]. 中国人民大学出版社,2018.(必读)
[2] 斯蒂芬森,晋劳,琼斯. SQL 入门经典(第 5 版)[M]. 人民邮电出版社,2011.(必读)
[3] 黄缙华.MySQL 入门很简单[M].清华大学出版社,2011.(选读)
[4] 何晓群. 多元统计分析(第 4 版)[M]. 中国人民大学出版社, 2015. (必读)
[5] 盛骤,试式千,潘承毅. 概率论与数理统计(第 4 版), 高等教育出版社,2008.(选读)
[6] 王斌会 . 多元统计分析及 R 语言建模(第 4 版)[M]. 暨南大学出版社, 2016. (选读)
[7] 李静萍. 多元统计分析:原理与基于 SPSS 的应用(第二版), 中国人民大学出版社, 2015. (选读)
[8] Wes McKinney. 利用 Python 进行数据分析[M]. 机械工业出版社,2014. (选读)
[9] 王燕. 应用时间序列分析(第四版),中国人民大学出版社, 2015.9 和 10 二选一)
[10] 王燕. 时间序列分析:基于 R, 中国人民大学出版社, 2015. (9 和 10 二选一)
[11] Daniel T. Larose,Chantal D. Larose. 数据挖掘与预测分析(第 2 版)[M]. 清华大学出 版社,2017. (选读)
[12] 经管之家,曹正凤. 从零进阶!数据分析的统计基础[M]. 电子工业出版社,2016. (选读)
[13] 经管之家,常国珍. 胸有成竹!数据分析的 SPSS 和 SAS EG 进阶[M]. 电子工业出版社, 2016. (选读)
[14] 经管之家,徐筱刚. 如虎添翼:数据处理的 SPSS 和 SAS EG 实现[M]. 电子工业出版社, 2016. (选读)
总结交流与答疑